贝叶斯算法

贝叶斯

Posted by jiang on November 6, 2018

条件概率

1
2
P(A|B) = P(A and B)/P(B)
贝叶斯准则 P(A|B) = P(B|A)*P(A)/P(B)

公式

朴素

1.简单假设 特征独立

所需样本数 N^10000 => 10000*N

2.每个特征同等重要

实现方式

1.伯努利模型实现 不考虑词出现次数

2.多项式模型实现 考虑词出现次数

3.高斯模型实现 连续

词集模型

词袋模型 次数

sklearn操作步骤

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#coding=utf-8

from sklearn.datasets import fetch_20newsgroups  # 从sklearn.datasets里导入新闻数据抓取器 fetch_20newsgroups
from sklearn.model_selection import  train_test_split
from sklearn.feature_extraction.text import CountVectorizer  # 从sklearn.feature_extraction.text里导入文本特征向量化模块
from sklearn.naive_bayes import MultinomialNB     # 从sklean.naive_bayes里导入朴素贝叶斯模型
from sklearn.metrics import classification_report

#1.数据获取
news = fetch_20newsgroups(subset='all')
print len(news.data)  # 输出数据的条数:18846

#2.数据预处理:训练集和测试集分割,文本特征向量化
X_train,X_test,y_train,y_test = train_test_split(news.data,news.target,test_size=0.25,random_state=33) # 随机采样25%的数据样本作为测试集
#print X_train[0]  #查看训练样本
#print y_train[0:100]  #查看标签

#文本特征向量化
vec = CountVectorizer()
X_train = vec.fit_transform(X_train)
X_test = vec.transform(X_test)

#3.使用朴素贝叶斯进行训练
mnb = MultinomialNB()   # 使用默认配置初始化朴素贝叶斯
mnb.fit(X_train,y_train)    # 利用训练数据对模型参数进行估计
y_predict = mnb.predict(X_test)     # 对参数进行预测

#4.获取结果报告
print 'The Accuracy of Naive Bayes Classifier is:', mnb.score(X_test,y_test)
print classification_report(y_test, y_predict, target_names = news.target_names)